TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV MODULE AND SYSTEM PERFORMANCE

Ulrike Jahn, Task 13 OA

Hangzhou, 06 November 2012

TÜV Rheinland Group

- Experience from PV module qualification since 1996
- Team of 150 engineers and technicians worldwide (partly > 25 PV experience)
- Research and development with focus on module qualification (characterization and life time assessment)
- Active participation in national and international standardization committees
- Global PV Network with locations in Cologne, Arizona, Shanghai,

Taipei and Yokohama

Outline

- Introduction
- PV system performance analysis
- PV system energy yield prediction
- PV module reliability
- Statistics of laboratory testing
- Extended laboratory testing
- Conclusions

IEA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Introduction Reliable operation of PV modules and systems

PVPS

Performance, energy yield and lifetime.....

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV System Performance Analysis

DC/AC Conversion

$$Y_A = E_A/P_0$$
 (Array yield)

$$Y_f = E_{PV}/P_0$$

(Final yield)

$$L_c = Y_r - Y_A$$

 $L_s = Y_A - Y_1$
 $PR = Y_s / Y_s$

$$L_c = Y_r - Y_A$$
 Capture losses
 $L_s = Y_A - Y_f$ System losses
 $PR = Y_f / Y_r$ Performance ratio

$$\eta_A = E_A/H_i \cdot A_A$$

$$\eta_s = E_{PV}/H_i \cdot A_A$$

$$Y_f + L_c + L_s = H$$

$$\eta_A = E_A/H_i \cdot A_A$$
Array efficiency
$$\eta_s = E_{PV}/H_i \cdot A_A$$
Global efficiency

PV Performance Database

PVPS

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV System Performance Analysis 104 kWp PV Sound Barrier in CHE: PR = 0.68

IEA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV System Analysis Temperature effect on energy yield

Freestanding, roof mounted PV system, 30° tilt IR image (right) with Tbom= 55° C for Germany

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV System Analysis

Temperature effect on energy yield

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Prediction of Actual Long-Term Yield Spectral effects on energy yield

Outdoor spectrometer measurements: 300nm – 1600nm In module plane, 35° tilted facing south (direction influences result)

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV System Performance Analysis Germany: 1991 - 2005

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Prediction of Performance Ratio (PR)

Reise et. al. reported on the accuracy of Performance Ratio prediction at earlier EU PVSECs

PVPS

Reise et. al. at the 27th EU PVSEC, Frankfurt, September 2012.

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Prediction of Actual Long-Term Yield Uncertainties Related to Yield Prediction

•	Irradiation resource	(horizontal)
---	----------------------	--------------

- Direct/diffuse ratio and conversion model
- Shading (+ inverter behaviour)
- Soiling
- Reflection
- Spectrum
- Real vs. rated power
- Irradiance level dependency
- Temperature dependency
- Mismatch
- DC + AC cabling
- Inverter
- Transformer
- System degradation

Reise et. al.

at the 27th EU PVSEC, Frankfurt, September 2012.

3%	to	5%
0 / 0		0 / 0

2% to 3%

1% to 4%

1% to 3%

0% to 2%

0% to 2%

0% to 5%

1% to 2%

0% to 2%

0% to 1%

0% to 1%

0% to 2%

0% to 1%

0% to 5%

5% to 10%

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

PV Module Reliability

Irradiance: sun, sky

Temperature: heat, frost, night-day cycles

Mechanical stress: wind-,snow load hail impacts

Humidity

Moisture: rain, dew, frost

Atmosphere: Salt mist, dust, sand, pollution

PV modules are complex products that combine materials of different physical and chemical properties.

TÜVRheinland**

PV Module Reliability Testing

- IEC test standards for product qualification of PV modules as a minimum requirement to undertake reliability testing.
- The primary goal of IEC testing is to identify the initial short-term reliability issues in the field.
- Extended IEC testing is typically applied to reveal weaknesses in the construction

IEC 61215: c-Si PV modules IEC 61646: Thin-film PV modules IEC 62108: CPV modules

Precisely Right.

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

IEC standards

Type approval of PV modules according to IEC 61215 and IEC 61646

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

IEC Qualification Testing Monitoring of degradation

Degradation parameter	Test method / procedure
Visual changes (Yellowing, soiling, corrosion etc.)	Visual inspection
Deterioration of max. power	Max. power characterisation at STC (5% threshold in IEC 61215)
Insulation resistance	Dry insulation test Wet insulation test
Internal series resistance	I-V measurement at 3 irradiances and constant module temperature
Microcracks in cells, interruptions of electrical interconnection circuit	Electroluminescence (EL) record I _{TEST} = I _{SC,STC}

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Precisely Right.

IEC Qualification Testing Failure rates c-Si and TF modules (2007 - 2011)

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

IEC Qualification Testing Failure rates c-Si modules (2007 - 2011)

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

IEC Qualification Testing Failure rates c-Si modules (2007 - 2011)

- Damp Heat Test (DH)
 - 1000 h, 85° C, 85% RH
- DH is a stress test for the quality of the used encapsulant (moisture protection)
- Failure cause:
 - Delamination due to processing, contamination, material properties
 - Back sheet adhesion loss (lamination problems)
 - Corrosion

- Thermal Cycling Test (TCT)
 - 200 cycles, -40° C to +85° C
- TCT is a stress test for cell connectors due to different thermal coefficients of glass, Si wafer and copper
- Failure cause:
 - Thermo-mechanical stress

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Precisely Right.

Laboratory Testing

Failure mechanism: Thermo-mechanical induced stress

- PV modules combine materials with different coefficients of thermal expansion (glass cover, polymeric encapsulation, solar cells, polymeric back sheet, metal parts of internal wiring)
- Degradation processes may occur originating from thermo-mechanically induced stresses to interconnects (cyclic movement of cells) of loss of adhesion strength at interfaces [1]

[1] S. Dietrich: Mechanical and Thermo-Mechanical Assessment of Encapsulated Solar Cells by Finite-Element-Simulation, SPIE Optics+Photonics, 2010

Critical Tests for TF

- Mechanical Load Test (ML)
 - Uniform load of 2400 Pa, applied for 1 hour to front and back surfaces in turn
- ML is a stress test for the mechanical quality of modules (frame, glass, laminate) in combination with mounting system

High wind and snow loads

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Laboratory Testing Extended Thermal Cycling Test

7 crystalline silicon PV modules with intermittent diagnostic after 200, 400, 600 and 800 cycles

measurements

Results:

All modules fulfill IEC 61215 test requirements (TC200)

Three modules still fulfill IEC 61215 test requirements after TC800

Increased power degradation starting from TC400

Conclusions (1)

- Quality of PV system performance has been increasing during the past years. Optimized grid-connected PV systems obtain mean annual PR values higher than 0.80.
- Improved PV system quality is due to:
 - more precise rated module power, less tolerances
 - improved inverter efficiencies
 - higher system availability
- PV system monitoring and fault are significantly increasing energy yields and reliability of PV systems.

Conclusions (2)

- Prediction of Actual Long Term Yield is (still) rather uncertain
- Comparison to operational data leads to refined and validated models
- Detailed investigations may improve also single calculation steps
- Even 15 minute average values of in-plane irradiation and AC power output contain valuable information
- Despite of the overall uncertainty, validated models for single calculation steps allow for a reliable optimization of some design parameters.

Conclusions (3)

- Failure rates of IEC qualification testing tend to decrease over the past years due to advanced/advancing technologies and improved quality control (both c-Si and TF)
- Most frequent test failures and causes of module failures are:
 - DH, TCT (200), HF, ML, HS (for crystalline modules)
 - DH, ML, RC, HS (for thin film modules)
- Most test failures are due to problems in module processing and quality control issues.
- Most frequent failures causes of IEC qualification are: soldering problems, lamination problems and glueing materials for c-Si.

Conclusions (4)

- PV modules are complex products and are subject to fabrication and material-related tolerances:
 - Degradation processes and long-term reliability are complex and may not be uniform for modules of the same construction and type;
 - For laboratory tests also variations in test conditions need to be considered.
- IEC test levels are normally not sufficient to find out weaknesses in the module construction. For c-Si modules enhanced degradation will appear beyond 2000 hours test duration for Damp Heat Test and beyond 400 cycles for Thermal Cycling Test.
- More sophisticated non-destructive diagnostic tools are needed to better monitor degradation processes on module and materials level.

TASK 13: PERFORMANCE AND RELIABILITY OF PV SYSTEMS

Thank You for Your Attention!

IEC Qualification Testing Pass criteria for TF modules

After completion of all test sequences, the following pass criteria have to be fulfilled:

•Final STC output power after stabilization (e.g., light-soaking) at least 90% of the minimum rated power : (0.9 x (P_{manufacturer} – tolerance))

- •Minimum requirements for the electric insulation and wet) fulfilled:
 - $R_{iso} > 40 M\Omega / A [m^2] (A = module area)$
- No major visual defects detected

(dry

- Humidity Freeze Test (HF)
 - 10 cycles, -40° C to +85° C, 85%
 RH
- HF is stress test for cell connectors due to different thermal coefficients of glass Si and copper

Thermo-mechanical stress

- Mechanical Load Test (ML)
 - Uniform loads of 2400 Pa, applied for 1 hour to front and back surfaces in turn
- ML is a stress test for the mechanical quality of modules (frame, glass, laminate) in combination with mounting system
- Failure cause:
 - High wind and snow loads

- Hot Spot Test (HS)
 - Shading of one cell of the module
- HS is a stress test for cell quality
- Failure cause:
 - Different cell qualities
 - Local defects, shunts in wafer
 - Shunts due to soldering problems

Critical Tests for TF

- Hot Spot Test (HS)
 - Shading of cells of the module
- HS is a stress test for cell quality
- Failure cause:
 - Different cell qualities
 - Local defects, shunts
 - HS may lead to overheating of material and glass breakage

