

Transmission and Distribution System Interaction

Helfried Brunner
Thematic Coordinator Network Planning and Operation
Energy Department

Joint PVPS and ISGAN Workshop Vienna, 18th May 2015

Content

- 1. RES growth in Europe on example PV
- 2. Flexibility integration in electricity networks
- 3. T&D Interaction
- 4. Issues to be considered

Photovoltaic growth in Europe

- Massive growth due to:
 - Substantial subsidies
 - Reduced costs for PV
- Heterogeneous distribution of the installed capacity (countries / regions)
- >80 GW (End of 2013):
 - >35 GW in Germany
 - >20 GW in Italy
- Austria: ~630 MW (End of 2013)

Installed PV capacity (End 2013)

(EPIA, "Global Market Outlook for Photovoltaics 2014-2018," 2014

Special characteristics of PV on the example Germany

- "15 GW < 30 kW"
- 70 % of the overall capacity is installed in low voltage networks
- Cost efficient network integration is a challenge

Distribution of the installed capacity according unit size (Status 11.2014)

(EnergyMap www.energymap.info)

90% of all renewable power generation is connected to distribution networks

Heterogeneous distribution of installed PV capacity

(Source: EPIA-Global Market Outlook 2013)

Transition from uni- to bidirectional distribution grids

(Source: Frauenhofer IWES, 2014)

Development of RES system integration

Massive change from troublemaker being disconnected in case of any problem to troubleshooter supporting grid operation

- Local voltage support
 - Volt/Var Control
 - Extension to Volt/Watt control under discussion
 - Influence of on all voltage levels to be considered
- Frequency control
- Fault ride through (FRT)

Grid supporting behavior required in different network codes (challenge of defining the right Values)

Reactive Power Provision: PQ-Diagram ("mandatory")

 S_{min}

- Germany (BDEW and AR4105)
 - Low voltage:
 - No requirements ≤3,68 kVA
 - cosφ 0.95 (≤13.8 kVA) or 0.9 (>13.8 kVA)
 - Medium voltage:
 - up to cosφ 0.9
- Italy (CEI 0-21 8.4.4.2)
 - P = 3-6 kW: "Triangle" with $\cos \varphi$ 0,95
 - P > 6 kW "Rectangle" with cosφ up to 0,90

DG integration in distribution networks on example Germany

- 35% of low voltage network operators and 64% of medium voltage network operators are a affected by network reinforcement
- Investment needs very different depending on region and voltage level
- Innovative planning approaches in conjunction with intelligent technologies can reduce the expected network reinforcement dramatically
 - Reactive power management in network planning
 - Load management in network planning
 - Intelligent network components like OLTC at secondary substation level

Source: Moderne Verteilernetze für Deutschland (Verteilernetzstudie)," Sep. 2014)

DG integration in distribution networks on example Germany

- Small curtailment of active power can significantly reduce network reinforcement
 - 1% curtailment of annual generation leads to 30% reduction of network reinforcement
 - 3% curtailment leads to save 40% of network reinforcement

Flexibility Provision

- Enabling flexibility at all levels is a key issue for energy and cost efficient integration of DER.
- Possible flexibility resources are at demand level (demand response), generation level (active and reactive power management) and additional electricity storage.
- It is necessary to consider flexibility provision over traditional boundaries from distribution system level (including costumer level) up to transmission system level
 - Vertical integration and
 - Horizontal integration

DSO as Service Provider for the TSO: Reactive Power

Topic within ISGAN Annex 6, Task 5 on TSO – DSO interaction

Grid and Market

- For gaining benefits the integration of DER in both markets (whole sale, retail, balance...) and grid operation is crucial
- Solutions how to deal with contradicting signals from grid and market need to be developed
- Nevertheless, when developing new integrative control functions it is necessary to consider market design in order to ensure the economic feasible

Issues to be considered

- Coordination of power grid and market issues
- Optimizing voltage band management including reactive power management
- Grid Congestion management by flexibility/demand response
- Integrating flexibilities provided by prosumers and aggregators as an option in reactive power and voltage band management
- Integration of data from the low voltage networks in MV/HV SCADA/DMS systems
- Stability analysis in respect of reactive power flows caused from MV and LV reactive power management
- Influence and interaction of different grid codes: How can the distribution network in practice contribute to deliver ancillary services and are there improvements necessary for the future

AIT Austrian Institute of Technology

your ingenious partner

Helfried Brunner

Thematic Coordinator Network Planning and Operation
Energy Department
Electric Energy Systems
AIT Austrian Institute of Technology

Helfried.brunner@ait.ac.at | http://www.ait.ac.at