

Dr Muriel Watt IT Power (Australia) Pty Ltd

*IEA-PVPS Workshop, PVSEC22, Hangzhou*November 6th 2012

Outline

- Definitions of Parity
- PV prices and market trends
- Implications of grid parity
 - Economic
 - Technical
 - Social
 - Regulatory
- New opportunities

Photo: Bushlight system at Kakadu

Definitions of Grid Parity

Some options

- PV LCOE = retail tariff
- PV electricity gets paid the same as retail tariff
- PV ROI < projected LCOE of electricity purchases over 25 years
- PV pays for itself in less than customer's economic planning cycle (residential 7-10 years, commercial 2-5 years?)
- PV LCOE = wholesale electricity price
- PV delivered at < wholesale price + distribution savings

All site, regulation and customer dependent

305 kWp PV system on Alice Springs Crown Casino Photo: SunPower Corporation

PV Prices & Market Trends

Grid System Price Trends (APVA, 2012)

Evolution of grid-connected installations (PVPS, 2012)

Some International PV Targets (PVPS, 2011 & 2012)

Markets expected to change, but remain strong:

- China: 15 GW by 2015; 50 GW by 2020
- France: 5.4 GW by 2020; 25,000 new jobs
- India: 20 GW solar by 2022, 100 GW by 2030 (90% grid)
- Italy: 23 GW by 2016
- Japan: 28GW by 2020, 53 GW by 2030
- Saudi Arabia: 15 GW by 2032
- Spain: 3.6% of electricity by 2020

Australian PV Market

- with 2012 projections (APVA, 2012)

Adelaide showground Photo: First Solar

Implications of Grid Parity - Economic

Australian Residential LCOE trends and Grid Parity Projections (APVA, 2011)

Australian Commercial Sector Grid Parity Projections (APVA 2012)

Australian Utility-Scale grid parity projections

(APVA, 2012)

Economic Issues

Even once retail price parity is reached:

- Guaranteed PV connection or grid export not always available
- Parity can be countered by:
 - Increasing network cost components of tariffs, so energy is a smaller %
 - Increasing daily connection fees
 - Forced gross metering of PV output at bulk supply rate
- Non-transparent connect costs, procedures & timelines
- Energy market & network savings not passed back to PV owners (or even to customers)
 - Low or zero buy-back rates

Note that price gap remains for larger-scale systems connected to the transmission network

Needs more installations, R&D, short-term gap support

1.22 MWp PV system, University of Queensland

Implications of Grid Parity - Technical

Voltage rise

Y.Ueda (2009)

Reverse Power Flow / Reactive Power

Harmonics

Source: APVA/CEEM, 2012

Cloud issues

Source: APVA/CEEM, 2012

Implications of Technical Issues

- More difficult for countries with relatively inflexible coal and nuclear generation bases to accommodate PV than for those with more hydro & gas
- Installations already being limited because old networks are not designed for distributed generation / reverse power flow
- Network upgrade one option but:
 - DE (PV, EE & DSM) can often provide a lower cost solution
 - Stranded grid assets possible if trends to energy efficiency and self-sufficiency continue
- Smart grids needed
 - Not just TOU meters, but also smart inverters, communications & storage
- We need a very different type of grid

Implications of Grid Parity - Social

Social Issues

- Customers now have an option, since DE is readily available, can be cheaper than grid power & provides long term electricity cost certainty
- Electricity retail market structures and network assets often publicly owned and are hence vulnerable if:
 - Buildings trend to zero energy
 - Electricity usage drops with DE uptake
 - Customers opt for on-site storage and purchase from the grid only in offpeak periods
- Can equity and electricity access issues be resolved?
- NIMBY for larger systems, as has happened with wind?
 - Or will it be WIMBY??
- Legal rights to solar access need to be established

Implications of Grid Parity - Regulatory

Regulation / market design issues

- Electricity markets typically designed for central generation
- No incentive or inherent right to value distributed energy
 - Monopoly distribution businesses earn money by kWh transmission and can pass through all increased costs
 - Retailer earnings based on kWh sold
- New market designs needed which gives equal value to supply and demand options
 - Transparency to allow markets to operate and for customers to be able to choose the best options
 - Rights and technical standards for connection
 - Ancillary service requirements and rewards
 - Appropriate setting of network use charges
 - Defined roles and regulation for new energy service providers
 - Mechanisms which allow energy and network benefits from DE to be passed to system owners and/or customers generally
 - Californian Integrated Resource Planning model may be appropriate

New Opportunities

New Technologies, Businesses, Markets, Skills

- New supply and demand markets and businesses
 - Active end-user participation
 - Wide range of energy service providers
- Modern power electronic devices with services besides active power injection
 - Fault Ride-Through Dynamic grid support
 - Active voltage and reactive power control
 - Use of PV inverter as active filters
- More detailed forecasting of supply and demand
- Energy self-reliant communities
 - Mini-grids
 - Zero energy buildings
 - Rural electrification without large grid extension
 - Disconnecting high cost, low volume portions of existing distribution grids
- More PV technologies and applications
 - New PV device types
 - New transmission grids to high Renewable Energy sites

References

- APVA, 2011, Residential sector modelling of PV and electricity prices, report for the ASI
- APVA, 2012, Commercial sector modelling of PV and electricity prices, report for the CEC
- APVA, 2012, Modelling of Large-Scale PV systems and electricity prices, report for the CEC
- APVA, 2012, National Survey Report of PV Power Applications in Australia 2011, Prepared for the Australian PV Association, May 2012.
- APVA/CEEM, 2012, Carnarvon: A Case Study of Increasing Levels of PV
 Penetration in an Isolated Electricity Supply System, a report by the UNSW
 Centre for Energy and Environmental Markets for the Australian PV Association
- Burger, B., 2011, Fraunhofer ISE, EEX Transparency Platform, www.transparency.eex.com
- European PV Industries Association (EPIA), 2012, Global Market Outlook for PV until 2016, May 2012.
- Gifford, J, 2012, Germany: Record 40% solar weekend, PV Magazine, 29 May (22 GW = 40% demand)
- Green, M., 2012, The 2012 Semi Roadmap for PV- Bigger, Thinner, Faster, Cheaper, SPREE Seminar, UNSW, May 2012.
- PVPS, 2012, Trends in PV Applications. Survey report of selected IEA countries between 1992 and 2011, Report IEA-PVPS T1 – 21: 2012
- Ueda, Y. T. K., 2009, Detailed Performance Analyses Results of Grid-Connected Clustered PV Systems in Japan. Tokyo: University of Agriculture and Technology.

