DETAILED MODELING OF COMPLEX BIPV SYSTEMS

Johannes Eisenlohr, Wendelin Sprenger, Helen Rose Wilson, Tilmann E. Kuhn

PVPDMC 2016
Freiburg, October 25th

Fraunhofer Institute for Solar Energy Systems ISE
www.ise.fraunhofer.de
AGENDA

- Which challenges occur for building integrated photovoltaics?

- Simulation of irradiance, cell temperature, electrical cell behaviour, module interconnection and inverter behaviour

- Example project in Zürich (Art Nouveau building from 1908)
BIPV – a short definition

- **BIPV = Building-Integrated Photovoltaics**
 - Components of the building skin, that additionally generate electrical power output

- Requirements and possible issues
 - Fulfilling of building norms, statics, durability (higher demands than for standard PV), appearance from outside and inside, thermal insulation, watertightness, electrical efficiency…
Challenges for BIPV systems regarding electrical system design

- Planning and construction process much more complex
- Different orientations of modules
- Partial shading
- Different module sizes
- Complex module interconnections
- Complex inverter requirements
- ...

© Fraunhofer ISE
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance

2. Cell temperature
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance
2. Cell temperature
3. Cell IV curves
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance
2. Cell temperature
3. Cell IV curves
4. System IV curves (DC output)
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance
2. Cell temperature
3. Cell IV curves
4. System IV curves (DC output)
5. Inverter (AC output)
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance
2. Cell temperature
3. Cell IV curves
4. System IV curves (DC output)
5. Inverter (AC output)
Topic I: Irradiance Calculation
Open Source Ray-Tracing Program RADIANCE

- Calculation of the sky radiance distribution based on horizontally measured irradiance values according to Perez model\(^1\)
- Backward ray-tracing of scene with the geometry of the building and its surroundings with corresponding optical properties of materials including:
 - Partial shading
 - Multiple reflections from ground or other surfaces

Output
Irradiance values for each PV cell involved and each time step of the defined time range (e.g. 5-min steps and one year)

Topic I: Irradiance Calculation

Sky

The diffuse radiation from the sky is important for:

- Calculation of the irradiance on tilted surfaces
- Analysis of partial shading

The model of Perez (1993) allows the calculation of the sky radiance distribution and is implemented in the ray-tracing program RADIANCE (gendaylit).
Topic I: Irradiance Calculation

Needed: Irradiance level in the PV module that can be compared to STC irradiance

Step 1: Irradiance in front of the PV Module

\[E = \int_{\Omega} L \cos(\theta_M) \, d\Omega \]

\[\rightarrow E \text{ doesn’t include the higher reflectance of the PV module at large incidence angles!} \]

Step 2: Calculation of an “effective” irradiance

\[E_{eff} = \int_{\Omega} L \cdot K(\theta_M) \cdot \cos(\theta_M) \, d\Omega \approx E_{dir} \cdot K(\theta_{dir}) + E_{diff} \cdot K(\bar{\theta} = 60^\circ) \]
Simulation-based approach for complex BIPV systems

For each time step:

1. Irradiance
2. Cell temperature
3. Cell IV curves
4. System IV curves (DC output)
5. Inverter (AC output)
Topic IV: Electrical simulation of the DC circuit

Simple Example: Standard Module

Interconnection:

→ PV cells, resistances, diodes

→ parallel, series, cross-connected

the electrical circuit of a standard 60-cell PV module
Topic IV: Electrical simulation of the DC circuit

Simple Example: Standard Module

Interconnection:

→ PV cells, resistances, diodes
→ parallel, series, cross-connected

1. Calculation of the IV curves

IV curve of the standard 60-cell PV module at different (homogeneous) irradiance levels on one shaded PV cell at 1000 W/m² irradiance on all other PV cells.

Blue: 1000 W/m², green: 800 W/m², …, yellow: 0 W/m²
Topic IV: Electrical simulation of the DC circuit
Simple Example: Standard Module

Interconnection:
→ PV cells, resistances, diodes
→ parallel, series, cross-connected

2. Calculation of the operation points

Operation points of the shaded PV cell in a standard 60-cell PV module at different (homogeneous) irradiance levels on the shaded PV cell and 1000 W/m² irradiance on all other PV cells, vs. the applied PV module voltage.

Blue: 1000 W/m², green: 800 W/m², ..., yellow: 0 W/m²
Outcomes so far

- In almost all cases, BIPV systems have to deal with inhomogeneous irradiation. The impact of shading and multiple reflections (ground, other buildings) is not negligible and can be calculated.

- Inhomogeneous irradiation leads to module/system IV curves and cell operation points that vary strongly in time and are difficult to predict. They have to be simulated.

- The temperature situation has to be investigated in advance. Especially for thermally insulated facades, peak temperatures can be higher than expected.

- The inverter has to be chosen with care. Voltage or power restrictions can lead to serious losses or damage.
Example Project in Zürich

Renovation of an urban building. Goal: “Plus Energy Building”
Example Project in Zürich

Renovation of an urban building. Goal: “Plus Energy Building”
Example Project in Zürich

Renovation of an urban building. Goal: “Plus Energy Building”
Example Project in Zürich

Data in brief:

- 100% power supply (grid connection)
- Nominal system power: 27.94 kWp
- 198 PV modules with 112 different sizes
- 19 different module expositions
- **Goal: 14000 kWh per year**
Example Project in Zürich

- Calculation of time-dependent irradiance (1)
- Calculation of time-dependent module temperature (2)
- Calculation of cell IV characteristics for all irradiance and temperature levels (3)
- Calculation of system IV curve based on the electrical interconnections of cells and modules including bypass diodes (DC output) (4)
- Calculation of inverter output (AC output) (5)
Example Project in Zürich

- **Calculation of time-dependent irradiance** (1)

- **Calculation of time-dependent module temperature** (2)

- **Calculation of cell IV characteristics for all irradiance and temperature levels** (3)

- **Calculation of system IV curve based on the electrical interconnections of cells and modules including bypass diodes (DC output)** (4)

- **Calculation of inverter output (AC output)** (5)
Example Project in Zürich

Irradiance simulation

Calculation of irradiance for every PV cell (time steps: 10 min)
Example Project in Zürich
Calculation of DC-output

Example of subsystem: One PV Module
Example Project in Zürich
Various challenges to electrical system design

- Which modules can be interconnected in series to strings?

- Which strings can be interconnected in parallel?

- Inverter restrictions (MPP tracking range, voltage range) very important for systems with frequent partial shading

Result: 14 sub-systems with minimized mismatch losses of 6.2 %
Calculated yield: **512.78 kWh / kWp; 14328 kWh**
Example Project in Zürich

Status

- System built and converting energy since March 2016
- Goal: 14000 kWh/year
- Predicted complete year (based on data from Test Reference Year): 14328 kWh (100%)
- Predicted April to September (based on data from Test Reference Year): 10502 kWh (73%)
- Measured April to September 2016: 9780 kWh (68%, means 93% of prediction) (preliminary data)
Example Project in Zürich

Status

% of predicted yield April-September

Sub system nr.
Summary and Outlook

Detailed simulation approach for (BI)PV systems allows for an accurate calculation and optimization with regard to:

- Irradiance conditions including shading
- Electrical design (cell and module interconnection)
- Inverter behavior
- Fail-safe design

For an exemplary project in Zürich, a 27.9 kWp BIPV system with 198 modules, 112 different module sizes and 14 inverters has been electrically designed and simulated.

- Predicted yield annual: 14328 kWh/year
- Yield after construction April - September 2016: 9780 kWh (93% of prediction for April - September)
Thanks to all project partners and colleagues!

Gallus Cadonau (Bauherr)

FENT Solare Architektur

Ertex solar

Solarinvert

Fraunhofer ISE
Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Johannes Eisenlohr

www.ise.fraunhofer.de
johannes.eisenlohr@ise.fraunhofer.de
Simulation based approach for complex BIPV systems

For each time step:

1. **Irradiance**
 - Raytracing based on
 - 3D geometry
 - Meteorological data (diffuse and direct irradiation)

2. **Cell temperature**
 - Calculation based on
 - Module layer structure
 - Irradiance

3. **Cell IV-curves**
 - Calculation based on
 - Datasheet specifications
 - Two diode model

4. **System IV-curves (DC-output)**
 - Calculation based on
 - Electrical interconnection including diodes, resistances etc.

5. **Inverter (AC-output)**
 - Calculation based on
 - Inverter specifications
Example Project in Zürich – detailed result of optimization

<table>
<thead>
<tr>
<th>Sub system</th>
<th>Inverter input ports</th>
<th>No. of PV cells</th>
<th>No. of module orientations</th>
<th>Nominal power [Wp]</th>
<th>Calculated DC-output per kWp and year (without inverter)</th>
<th>Calculated mismatch losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>613</td>
<td>2</td>
<td>1951.8</td>
<td>472.2</td>
<td>7.0%</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>296</td>
<td>1</td>
<td>942.5</td>
<td>375.1</td>
<td>12.3%</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>901</td>
<td>4</td>
<td>2868.8</td>
<td>796.2</td>
<td>3.6%</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>921</td>
<td>5</td>
<td>2932.5</td>
<td>601.8</td>
<td>2.0%</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>288</td>
<td>1</td>
<td>917.0</td>
<td>195.1</td>
<td>16.6%</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>405</td>
<td>3</td>
<td>1289.5</td>
<td>364.2</td>
<td>8.6%</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>634</td>
<td>3</td>
<td>2018.7</td>
<td>626.9</td>
<td>3.0%</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
<td>744</td>
<td>3</td>
<td>2368.9</td>
<td>804.3</td>
<td>2.5%</td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>720</td>
<td>2</td>
<td>2292.5</td>
<td>908.0</td>
<td>1.4%</td>
</tr>
<tr>
<td>J</td>
<td>6</td>
<td>830</td>
<td>1</td>
<td>2642.7</td>
<td>421.1</td>
<td>9.4%</td>
</tr>
<tr>
<td>K</td>
<td>5</td>
<td>802</td>
<td>1</td>
<td>2553.6</td>
<td>404.8</td>
<td>13.8%</td>
</tr>
<tr>
<td>L</td>
<td>5</td>
<td>600</td>
<td>1</td>
<td>1910.4</td>
<td>403.4</td>
<td>11.4%</td>
</tr>
<tr>
<td>M</td>
<td>5</td>
<td>528</td>
<td>1</td>
<td>1681.2</td>
<td>385.8</td>
<td>18.5%</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>494</td>
<td>1</td>
<td>1572.9</td>
<td>415.7</td>
<td>16.5%</td>
</tr>
</tbody>
</table>
Topic I: Irradiance Calculation

Angular Correction

\[E_{eff} = \int_{\Omega} L \cdot K(\theta_M) \cdot \cos(\theta_M) \, d\Omega \approx E_{dir} \cdot K(\theta_{dir}) + E_{diff} \cdot K(\bar{\theta} = 60^\circ) \]

Examples of different \(K(\theta_M) \) curves (Martin, 2001\(^1\)):

\(E_{eff} \) can be directly compared to the irradiance level at STC.