GRID INTEGRATION OF PV

Dr.-Ing. Bernhard Wille-Haussmann

Fraunhofer Institute for Solar Energy Systems ISE

6th PV Performance Modeling and Monitoring Workshop
24th October 2016
AGENDA

The Challenge
Solutions for grid integration
Grid planning with renewables
Conclusion
What is the challenge for grid integration? And its classical solution

- Decreasing of line impedance Z_L
- Voltage band violations
- Current lead to heating of cable
- Increase cross section of cable

$$U_2 = U_1 - Z_L I \rightarrow \text{voltage decrease}$$
$$U_2 = U_1 + Z_L I \rightarrow \text{voltage increase}$$
Optimal grid expansion
Avoid grid reinforcement

Cost optimal grid
Operation of Local Systems

Electric thermal systems
- Thermal storages offer the possibility to decouple thermal and electric processes

PV-Battery Systems
- Local self consumption of electricity from PV
- Grid oriented operation

What are services for the Smart Grid?
Grid-friendly operation of PV battery systems

- Self consumption optimization does not avoid grid peaks
- Grid friendly operation: up to 66% surplus PV can be installed.
Increasing feed-in of fluctuating renewables affects grids operation.

Feed-in management becomes more important.

Decentralized feed-in of renewables influences dimensioning of electricity grids.

This energy can be used better instead of shutting off.
Integration: reactive power control

- Voltage will be stabilized by changing the phase between voltage and current.
- Increasing of inverter nominal power
- Increasing of losses
- Reactive power control is defined in grid connection guidelines.
Integration: voltage control with tap changer

- Usage of variable tap-changer at transformer
- Dynamic adaptation of voltage a point of connection
- Usage of the full voltage range
- No reduction of PV necessary.

source: Maschinenfabrik Reinhausen
The planning process of a local DSO

1. Data Export
2. Calculating grid load
 - Testing measures
 - Economical evaluation
3. Import changes

GIS System

Grid planning
Expected Development

- Decentralized production
 - Photovoltaic: 180 kWp
 - Combined heat: 0 kW

- Heat
 - Needed heat: 50 MWh
 - Heat pump: 50%
 - Storage per HP: 3 h

- Electrical Storages
 - EV: 0
 - PV-batteries: 0 kWh
NEMO Use Case – Reference Ringkøbing

Step 2: Identifikation

- Heatpumps dominate
- Low voltages

- Winter: high trafo load by HP
- Summer: Inversed power flow because of PV
NEMO Use Case – Reference Ringkøbing
Step 3: Definition of possible solutions

Solution possibilities

- Grid reinforcement
 - ✔ conventional
 - □ OLTC
 - □ Q-Control

- Intelligent Control
 - ✔ Demand Side Management
 - □ Local energy management
 - □ grid friendly PV
NEMO Use Case – Reference Ringkøbing
Step 4: Solution with convention reinforcement

Starting point

Expansion

Conventional reinforcement

- Replace cables: 1,1 km NAYY 4x240
- Change transformer: 400 kVA

Cost*: 93,000 €

* 1 km NAYY240 57,000€ (inkl. Verlegung)
Transformator 400 kVA: 9,000 €
NEMO Use Case – Reference Ringkøbing
Step 5: Solution with Demand Side Management

Status Quo

Demand Side Management

- Reducing peak load: 220 kW → 170 kW
- Replace cables: 0.3 km NAYY 4x240
- Change transformer: not necessary

Cost*: 23,000 €

* 1km NAYY240 57,000€ (inkl. Verlegung)
Transformator 400 kVA: 9,000 €
Conclusion

- Decentralized generation can lead to
 - Violations of voltage bands
 - Violation of thermal restriction

- Beside conventional reinforcement
 - Energy Management
 - Low voltage on load tap changers
 - Reactive power control

Gird planning has become a multi criteria optimization problem.
Thank You!

Fraunhofer Institute for Solar Energy Systems ISE

Dr.-Ing. Bernhard Wille-Haussmann

www.ise.fraunhofer.de
bernhard.wille-haussmann@ise.fraunhofer.de